
DALCO Cluster Manual
The following manual will help you to operate and use your DALCO Cluster. Most tasks are the
same for single workstations and servers. A cluster is basically just a collection of single systems
with a common look and feel for the users and for the applications. This manual will describe the
differences and the tools which allows you to distribute software and your work.

The manual is compiled to describe your personal system, with all installed options and covers the
daily tasks usually done. You find separated parts for the system administrator and for the users,
feel free to distribute the appropriate pages to your team.

The document is also available for download on the webinterface of your cluster, in the Cluster
documentation section.

In case you have still open questions: Don't hesitate to call our support on +41 44 908 38 38 or write
an email to support@dalco.ch!

Have fun with your DALCO Cluster!

© 2008-2010 DALCO AG Switzerland

mailto:support@dalco.ch

DALCO Cluster Manual
Cluster Uni Fribourg..1

Network overview...1
Filesystems..1

Base installation (Kickstart)...2
Operating system...2
Kickstart Setup...2

Installation source..2
DHCP...2
TFTP..2
PXE..3
Kickstart...3
Postinstallation...3
First boot..3
Configration files..3

Prepared services..4
NFS..4
SSH..4
R-Services..4
Timeserver...4
Caching DNS...4
Logserver...4

Node installation..6

Accessing the cluster..7
Command line and X11...7

You are using a UNIX like operating system..7
You are using a Windows based workstation..8

VNC...8
Start the VNC server..9
Stopping the server..9
Download the client..9
Access your session..10
Improve your session setup...11
Securing your VNC session...12

NX..12
Download the client..13
Start a session...13

Up- and download of data..16
Command line basics...16

Navigating in the tree...16
Edit a file..17
Pack and unpack archives...18
Manage your processes...18
Adjust your environment..18
Change your password..19

Accessing a node...19
Distributing commands and files..19

10.02.2010 15:46:17

DALCO Cluster Manual
Accessing the cluster

Executing a command on all nodes...19
Pushing out a file..19
Finding a process...20
Listing your processes...20

Administrators Tasks..21
Booting and shutdown...21
Adding users..21
Installing software..21

Software used by a single user..22
Packages provided by the distribution...22
RPM packages provided by the software vendor...22
DEB packages provided by the software vendor...23
Software distributed with an installer..23
Software distributed as source...24

Backup...24

Managing Infiniband..25
Subnet manager..25
Checking connectivity..25
Checking for errors..25

Monitoring the cluster...27
Webinterface..27
Command line..28

Using the cluster..30
Compiling and installing software..30
Running your code...30

Runing MPI jobs...30
Running MPICH2 jobs..31
Running PVM jobs...32

Use the job scheduler!...33

Using the Grid Engine...34
Listing available nodes and CPUs...34
Running interactive work..34
Submit a serial job...35
Submit a job using a full node..36
Submit a job using more then one CPU...36
Submit MPI jobs...37

Submit MPICH jobs..37
Submit OpenMPI jobs..38
Submit generic MPI jobs..39

Submit PVM jobs...40
Kill a job...40
Troubleshooting...40

10.02.2010 15:46:17

DALCO Cluster Manual
Examples..42

Serial jobs..42
Building POV-Ray..43
Testing...43
Submitting to batch..43

Shared memory...44
Building POV-Ray..44
Testing...45
Submitting to batch..45

MPI Jobs..45
Building POV-Ray..46
Testing...46
Submitting to batch..47

PVM Jobs...47
Building POV-Ray..48
Testing...48
Submitting to batch..49

Which model should I use?..49
License...50

10.02.2010 15:46:17

Cluster Uni Fribourg
One master, one fileserver, thirty compute nodes and two fat nodes, Intel Nehalem based.
Infiniband interconnect. DALCO Cluster Suite based on CentOS 5.4.

Network overview

Private LAN with IPs out of 192.168.100.0/24 are attached to eth0. On the master and the server
the public LAN is attached to eth1. Management interfaces are sharing the physical LAN
connection of eth0. The Infiniband interconnect is using IPs out of 192.168.101.0/24.

Filesystems

The master is using a RAID1 of 250G for it's system and the installation sources. The server is
using a RAID6 devided into two volumes of 250G and 13T for the homes and applications of the
users. /home, /apps, /opt/cluster and /opt/sge are shared using NFSv4 across the cluster.

The master and the nodes have a local /scratch available for the users.

10.02.2010 15:46:17 1

Base installation (Kickstart)
The master of your cluster is preloaded with our DALCO Cluster Suite. It contains all user data, the
cluster wide configuration, the installsource for the nodes and prepacked software. It is the place
where users log in and do their interactive work like preparing and postprocessing data, compiling
and debugging code and submit their jobs.

The master also operates all basic services for the cluster. It act's as timeserver for all the nodes, a
caching only DNS server and the queue manager for managing distributed batch jobs. The system
is designed to operate mostly independend of your existing infrastructure - even it is fully integrated
into your lan. The master monitors the state of all nodes and provides a central webinterface
containing the current state and historical data of the system.

Operating system

The base installation of the master is done using Anaconda. Fell free to use adjust the configuration
using the standard tools or by simply editing the configuration files. There is no automatism which
destroys your changes. We took care to select a good choice of software for building and running
typical cluster applications.

All our scripts and software packages are located in /opt/cluster, which is shared over all
nodes. The directory /opt/cluster/admin is in the path to allow you the usage of our tools
without entering the full path.

Kickstart Setup

The configuration of the Kickstart config files is automated by scripts. There are also some
configuration files on the master itself, we'll describe them in the order of execution:

Installation source

A complete copy of the installation media is found in /opt/cluster. This repository is used during
installation, use it also when you have to install additional packages on the master ot on the nodes.

DHCP

The DHCP server on the master is configured to offer the nodes their stable IP addresses. The
server is configured to not disturb an existing DHCP server. Only cluster nodes will get an IP
address.

The mapping from the MAC address of each node to it's IP number is defined in
/etc/dhcpd.conf. In case of a node replacement, you have to adjust the file with the provided
MAC address.

TFTP

After getting an IP address, the node requests the PXE boot loader over TFTP. The TFTP server is
accessible for the cluster nodes only. There is no information leaked out to other systems in your
LAN. All files are located in /tftpboot.

10.02.2010 15:46:17 2

We use PXElinux as a network aware boot loader for the installer.

PXE

PXElinux requests it's configuration file which is served out of /tftpboot/pxelinux.cfg and it's
menu in /tftpboot/message. These files are generated using the script generatePXE which is
located in /opt/cluster/spool/admin. Feel free to adjust the script and rerun it to regenerate
the configuration files in case you like to boot different floppy images or linux kernels.

The default option for the next boot of the nodes is controlled by the parameter of generatePXE.
Use generatePXE install to force a reinstallation of all nodes.

Kickstart

Anaconda out of the loaded kernel and initrd will ask for the personal configuration file over NFS.
This is prepared using the script generateKS in /opt/cluster/admin. Adjust and rerun this
script for changes in the filesystem layout, the network settings or for additional packages provided
by the distribution.

We'll set a static IP number for each node to give you a stable network operation even during an
outage of the DHCP server located on the master.

Postinstallation

At the end of the installation done by the distributions installer, the script
/opt/cluster/admin/postinstall.sh is called. We do some basic tasks like copying over
our set of configuration files, switching of services which are not needed in a cluster environment
and installing additional packages.

In the postinstall stage, the system isn't yet fully up and still running the installer's kernel. We have
some limits as most of the daemons are not yet running and some esential kernel modules are not
loadable. We introduced a second stage to do advanced tasks, after the first successful boot of the
node.

First boot

The script /opt/cluster/admin/firstboot.sh is run during the first boot of the node. All
services are up and running, the final kernel is installed. We use this script to install all software
packages, the job scheduler and the monitoring.

Adjust this script to add additional software during the installation of your nodes.

Configration files

All adjusted configuration files are located in /opt/cluster/spool/node-config. They are
copied over to the node in the postinstallation process. You may add additional files or adjust them.

The script clusterSyncFiles out of /opt/cluster/admin takes care to synchronize the most
changed configuration files, push them out to the nodes and keeps
/opt/cluster/spool/node-config up to date.

10.02.2010 15:46:17 3

Prepared services

A cluster is always a trusted system. Whenever possible we separate the cluster LAN with the
nodes from your cooperate LAN. A firewall permit only the cluster LAN to access the essential
services. This allows the secure usage of the potentional insecure IP based authentication used by
several services. Using this approach, we gain a lot of performance from avoiding cryptographic
authentication of the communication.

NFS

/home and /opt/cluster are shared to all nodes using NFS. To add other shared directories,
add them on the master in /etc/exports. On the nodes add it to /etc/fstab. Take care to add
them also to /opt/cluster/admin/generateAY. Rerun the script to avoid reinstalled nodes
won't get the mount.

All exported filesystems are located in /export on the master. To provide a convenient access on
the master, they are bind mounted to the right place. You'll see a bind mount from /export/home
to /home in /etc/fstab. On the nodes a NFS mount from the master to /home. This approach is
a best practice for NFS shared directories. We recommend you to add addtional filesystems using
the same way.

SSH

Inside the cluster all users have password free ssh access. We use RSH based host authentication.
There is no need to create a personal keypair. root use ssh-key-auth, as host based authentication
is not allowed for root by OpenSSH.

X11 is fully forwarded when using ssh. Access the cluster with X11 tunneling, all nodes will then be
able to open a display on your workstation.

R-Services

Some applications relies on rsh / rlogin to distribute their work. We enabled password free rsh /
rlogin access inside the cluster.

Timeserver

The master is operating a NTP server for the nodes. This avoids unneeded load on the upwards
time source. It will synchronize to the public available timeservers or your local timeserver.

Caching DNS

To avoid unneeded load on your cooperatre DNS server, the master operates a caching only DNS
server. There are no additional zones inside the cluster. We use exclusively /etc/hosts for the IP
to name mapping.

Logserver

The master is logserver for all the nodes. You do not have to login to a node to access it's

10.02.2010 15:46:17 4

/var/log/messages. Just use the one of the master which consolidates all messages.

10.02.2010 15:46:17 5

Node installation
There are as many philosophies how to operate a cluster as there are administrators in the world.
We use the approach to install all needed software locally. Only data directories like /home are
shared. This avoids trafic during boot and startup of your programs. The installation process is fully
automated. A typical node (re-)installation runs completly unattendend.

While booting, you'll get a small boot menu:

Without interaction, the node will boot the default option. The default option is marked with an
asterisk. During operation, this is boot which boots up the system from the local disk. The default is
controlled by generatePXE and resetted during the installation back to boot.

The option install will reinstall the node. disktest and memtest are provided for our service
staff.

The unattendend installation is fully controlled by the AutoYast file generated by generateAY, the
postinstall.sh and the firstboot.sh scripts. All those steps are logged. You find the logfiles
after installation in the /root directory.

10.02.2010 15:46:17 6

Accessing the cluster
Your main interface will be the Linux command line. Of course, there are also many programs
running a graphical interface. But most computational tasks are just running in batch mode. Don't
worry, after the first steps you'll become familiar with the Linux shell and start to like it!

You need the name or the IP address of the master of your cluster. In the following examples, we
use master. Additional, you need a personal login and password. We use dalco for all the
examples.

Command line and X11

Depending on your workstation, there are some different programs used to get access to the
command line. All of them are using the ssh protocol. ssh is a secure and encrypted protoccol
especially written for shell access. Everything is done to keep the communication secure so nobody
will be able to listen to it.

X11 is the classic graphic environment for UNIX systems. A big advantage is the network capability.
A program running on one system is able to open a window on a different system. X11 itself is
unencrypted and has a sophisticated access scheme which is not easy to understand. ssh once
again provides a secure and simple way to tunnel X11 data.

You are using a UNIX like operating system

All flavors of Linux, UNIX and BSD provides ssh out of the box. Also MacOS X is such a system.
Open e terminal and call ssh:

$ ssh master

The first time you connect, ssh will ask you if the key presented by the master should be accepted.
Just enter yes. This key will be stored on your workstation and compared to the key presented by
the server in future connections. This ensures nobody is able to replace your master with a hacked
system.

In case you are really replacing or reinstalling your cluster, you need to remove the local copy of the
server key. Run the folling command:

$ rm ~/.ssh/known_hosts

In case your local login don't match with the login on the master, pass the master's login to ssh:

$ ssh dalco@master

ssh provides a convenient way to tunnel X11. Just enable the tunneling in the ssh call:

$ ssh -X master

Start your application. Every graphical window will be opened directly on your desktop.

ssh protects your local X11 server from unfriendly access. There are some rare applications which
needs additional rights and presents you the following error message:

10.02.2010 15:46:17 7

$ xxx
X Error of failed request: BadAtom (invalid Atom parameter)
 Major opcode of failed request: 20 (X_GetProperty)
 Atom id in failed request: 0x17
 Serial number of failed request: 3
 Current serial number in output stream: 3

In this case, use the trusted X11 forwarding of ssh:

$ ssh -Y master

You are using a Windows based workstation

Users of a Windows workstation should install Putty 1), a local copy is available on the webinterface
of the cluster, section Downloads.

To use X11 enabled applications, you have to install an X11 server like Xming 2) on your local
workstation and enable the X11 tunneling on the connections option of Putty.

Large commercial X11 servers like ReflexionX or Exceed have built in support for ssh and you don't
need to start Putty in advance. Be warned - even commercial X11 servers may give you headache
with applications which requests features not available in the server.

VNC

Another approach to access the cluster is the Virtual Network Computing. VNC is a quite old
development to share graphical desktops and we see several different implementations today. You
start the server part of VNC on the cluster and connect using a VNC viewer. You are able to detach
the session and let all your programs continue to run. Reattach the session from the same or a
different workstation. Even simultanous connections are allowed.

10.02.2010 15:46:17 8

Start the VNC server

All our clusters have the VNC server allready installed. RedHat based installations have RealVNC
3), SuSE uses TightVNC 4). Both servers uses the same protocol. A RealVNC client talks to a
TightVNC server and vice versa.

Check with your system administrator that the ports 5800-5999/tcp are open in the firewall on the
master.

Login on the master using ssh or Putty and start your personal VNC server. The first time you do
this, you will be asked for a password:

$ vncserver

You will require a password to access your desktops.

Password: secret
Verify: secret
Would you like to enter a view-only password (y/n)? n

New 'X' desktop is master:1

Creating default startup script /home/dalco/.vnc/xstartup
Starting applications specified in /home/dalco/.vnc/xstartup
Log file is /home/dalco/.vnc/master:1.log

The password is remembered, next time you start the VNC server it doesn't ask you again:

$ vncserver

New 'master:1 (dalco)' desktop is master:1

Starting applications specified in /home/brubischon/.vnc/xstartup
Log file is /home/brubischon/.vnc/scoop.cluster:1.log

One line is important: desktop is master:1 Remember the number, it's your personal display
number for the time the server runs. Each session get it's unique number to avoid clashes.

The VNC server tries to figure out the perfect size of your virtual screen. Sometimes this works,
somtimes you have to adjust the size during launch of the server:

$ vncserver -geometry 1024x768

Stopping the server

Use the following command to get rid of the running VNC session on the server. Select your display
number as parameter:

$ vncserver -kill :1

Download the client

On a common Linux workstation, the vncviewer is allready installed or available on the
distributions CD ROM.

10.02.2010 15:46:17 9

On a Windows workstation, you have to download the viewer. You don't need the server, the viewer
only binary is all you need. Get it from one of the following sites:

RealVNC: http://www.realvnc.com/products/free/4.1/index.html•
TightVNC: http://www.tightvnc.com/download.html•

MacOS X has a VNC viewer integrated. Use Connect to server and enter the URL
vnc://master:5901 while the last digit is your display number. For more speed and comfort we
recommend an alternative viewer:

Chicken of the VNC http://sourceforge.net/projects/cotvnc/•

Access your session

Launch the appropriate viewer and connect to the hostname and the display number of your
personal session:

You will be propted for your password and get the desktop:

Close the window anytime you like and reconnect later. The programs running on the cluster will
continue their work.

10.02.2010 15:46:17 10

http://www.realvnc.com/products/free/4.1/index.html
http://www.tightvnc.com/download.html
http://localhost:80/soft/manualprep.cgi/vnc://master:5901
http://sourceforge.net/projects/cotvnc/

Improve your session setup

The VNC server starts a basic environment which is available on any X11 installation. The look and
feel is somewhat old fashioned and only suitable for an experienced user.

You may improve the session by adjusting the file ~/.vnc/xstartup. It's original content starts up
twm as window manager:

xrdb $HOME/.Xresources
xsetroot -solid grey
xterm -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &
twm &

An example which starts up a full Gnome or KDE session including a fallback in case both are not
available:

#!/bin/bash

GSESSION="$(which gnome-session 2>/dev/null)"
STARTKDE="$(which startkde 2>/dev/null)"
TWM="$(which twm 2>/dev/null)"

if [-n "$GSESSION"]; then
 # by default, we run GNOME.
 exec "$GSESSION"
elif [-n "$STARTKDE"]; then
 # if GNOME isn't installed, try KDE.
 exec "$STARTKDE"
else

10.02.2010 15:46:17 11

 # Still no desktop? Start twm
 exec "$TWM"
fi

Kill and restart your server to get the adjusted environment.

Securing your VNC session

In a typical cooperate LAN there is no need to do encryption of the network traffic between your
workstation and the cluster. This looks different when you connect through a typical university
network or through the internet.

Once again ssh provides a simple solution. You remember the screen number from your VNC
server? Add 5900 to it. This is the port we will forward through ssh.

Using a comand line ssh, add the paramter -L. We use display :1 which results in port 5901:

$ ssh -L 5901:127.0.0.1:5901 master

Now start your vnc server and connect to localhost:1. The whole traffic will be encrypted and
tunneled through ssh.

Putty is also able to do forwarding. Before connecting, go into the appropriate configuration option
and add a tunnel. Afterwards, start your VNC viewer:

As you see, the displaynumber (:1 in this case) and the portnumber (:5901 in this case) are both
accepted.

NX

NX is an alternative to VNC to access clusters. It provides good performance using efficient
compressing and caching algorithm and asynchronous screen updates. The traffic is automatically
tunneled through ssh which encrypts everything between the cluster and your workstation. No
additional open ports are needed on the firewall. We use FreeNX 5) on the cluster side which is an

10.02.2010 15:46:17 12

OpenSource implementation of the NX server. Look for the directory /usr/NX to check if NX is
installed on your system. Our support will assisst you in installing FreeNX if it is not allready
preloaded.

Download the client

Get the appropriate client for your workstation from the cluster's webinterface or from Nomachine 6).
It is closed source, but free of charge.

Start a session

There are two ways to access your cluster. It depends on your personal preference which one you
will choose. For both approaches, start the NX Session Administrator and choose File, New NX
Session.

Enter your login and password in the box. Choose a nice name for your session with the cluster. All
the settings of the session are stored under this name. First time press the Configure button to
customize your session.

Full desktop

Enter the hostname or IP number of your cluster's master. Choose a UNIX Desktop, select Gnome
or KDE. Not all clusters have both desktops installed, so start first with Gnome. Choose an
appropriate window size which fits to your local screen. Using Fullscreen you will get a real Linux
Workstation look & feel.

Save this configuration and log in. You will get a window or a full screen view of the system running
on the cluster:

10.02.2010 15:46:17 13

This session is detachable. When you close your window, you are able to reconnect to your session
anytime later. All open applications will continue to run.

Terminal only

10.02.2010 15:46:17 14

Enter the hostname or IP number of your cluster's master. Choose a UNIX Desktop, Custom. Click
the Settings… button and check if the options Run the console and Floating window are selected.

Save the configuration and log in. You will get a terminal with full X11 forwarding. All windows from
the cluster are rootless integrated into your desktop:

10.02.2010 15:46:17 15

Up- and download of data

Using sftp or the various graphical frontends the up- and download of data is quite simple. We
recommend WinSCP 7) for Windows users or Cyberduck 8) for MacOS X users. The typical Linux
desktops Gnome and KDE have built in support for sftp. Open a filemanager window and go to
sftp://master/ in Gnome and fish://master/ in KDE.

As a Linux user, you have probably also the possibility to access the cluster wide filesystems on
your workstation using NFS.

Your homedirectory in the cluster is shared accross all nodes. Any file you place in /home/<your
login> is visible on the master and on all nodes. It's the starting point for all of your work. There
may be additional shared data directories available.

On the nodes, you'll find a public writeable /scratch directory. It's primary for applications using
local disk storage. Don't expect data placed in /scratch will survive a long time, the directory is
designed for temporary stuff only. Please clean up your temporary stuff and keep the nodes clean.
When not doing so, you'll get sooner or later real troubles - with your system administrator or with
your cluster.

Command line basics

After logging in, you get a command prompt. We will now describe the most common commands
used in this environment. Not all as a typical Linux installation provides you more then 3000
commands!

Navigating in the tree

All disk and network shares are mounted in a single tree. There are no separate drives, everything
is in a single namespace. The most used directories and their usage:

/bin Basic commands, in your ''PATH''
/sbin System commands, only used by ''root''
/lib, /lib64 Basic libraries, 32 and 64 bit variants
/usr/bin More commands, in your ''PATH''
/usr/sbin More system commands, only used by ''root''
/usr/lib, /usr/lib64 More libraries, 32 and 64 bit variants
/opt Software packages
/home/.../ Your personal home

10.02.2010 15:46:17 16

http://localhost:80/soft/manualprep.cgi/sftp://master/
http://localhost:80/soft/manualprep.cgi/fish://master/

/root System administrators home
/tmp Temporary stuff, may be small!
/scratch Temporary stuff

When logging in, you'll start usually in your Home. This directory is abbreviated with a ~.

ls shows you all files and directories in the current directory•
ls -l shows additional information like size and last modification time•
cd <directory> dive into the directory•
cd .. goes one directory up•
cd ~ brings you back into your home•
rm <file> removes a file•
mkdir <directory> creates a new directory•
rmdir <directory> removes an emtpy directory•
rm -Rf <directory> removes a directory including it's content•
less <file> look into a file•
vi <file> edit a file•

<file> and <directory> may be replaced by wildcards. Use a * to say all files and directories in
this directory. Useful for rm, but also really dangerous.

Edit a file

There are many, many different editors for Linux. Usually the hardcore Linux users, called geeks,
have quite intensive discussions which one is the best. They call this editor wars. But only one
editor is available on every Linux, BSD, MacOS and UNIX system, it's name is vi. We choose this
one for our manual even we understand why you will prefere another one for your daily work.

Start your editor session by typing vi <filename> in your shell. In case you choose an existing
file, it will be loaded. Otherwise the file will be created as soon as you quit vi.

vi knows two modes. First you beginn in the navigation mode. Use your cursor keys and PgUp /
PgDown to navigte in the file. Press i to start insert mode.

In the insert mode, you are able to write text. Press <ESC> to come back into command mode.

In the command mode, two keys are useful: x will delete the character under the current cursor
position, u will undo your last change.

To leave vi without saving the file, type :q! in the navigation mode. To leave vi with saving the
file, type :wq.

There are many, many additional options. But belief us: The described ones are enough to start and
edit your files.

Alternatives to vi are emacs, joe, nedit, nano, pico, gedit… There are thousends, but none of
them will be usable in any situation. Feel free to ask us for recommondations applicable to your
cluster!

10.02.2010 15:46:17 17

Pack and unpack archives

Software and data is usually distributed in a compressed tar file. Use the following matrix to get the
right commands to create, view and unpack such files:

Filename Create List Unpack Description

*.tar
tar cvf <tarfile>
<directories and
files>

tar tvf
<tarfile>

tar xvf
<tarfile>

Uncompressed

*.tar.gz
tar cvfz <tarfile>
<directories and
files>

tar tvfz
<tarfile>

tar xvfz
<tarfile>

Portable
compression

*.tar.bz2
tar cvfj <tarfile>
<directories and
files>

tar tvfj
<tarfile>

tar xvfj
<tarfile>

Only for modern
Linux systems

Manage your processes

When starting a program, it usually builds a process. Multiple processes could run at the same time.
Most processes are just waiting that something happens. You get an overview about your
processes using the following commands:

top interactive process watcher•
ps aux list all processes•
ps uax | grep dalco list processes of user dalco•
kill <PID> send a termination signal to process•
kill -9 <PID> force termination of a process, be careful•
killall <program> stop all processes running program•
killall -9 <program> same with force, be careful•

Adjust your environment

While the basic installation on a Linux cluster just works, most additional applications needs some
special environment. There are some variables which must be adjusted. Other applications requires
that you include a global configuration file in your personal one. See the manual of the application or
ask our support in case of questions.

All adjustements must be done in ~/.bashrc. Take the file in a editor, do the changes, logout and
login to activate the changes. Jobs submitted by mpirun, ssh / rsh or through the job scheduler
are also using those settings.

Add a directory to your program searchpath:

export PATH=/opt/fluent/6.3.26/Fluent.Inc/bin:$PATH

This allows you to start all programs out of the added directory without typing the full path to them.

Add a directory to your library searchpath:

export LD_LIBRARY_PATH=/opt/openmpi/lib:$LD_LIBRARY_PATH

10.02.2010 15:46:17 18

This step is needed for applications searching dynamic loadad libraries.

Add a license server:

export LM_LICENSE_FILE=1234@server

You will get the port and the servername from your system administrator.

Include an additional file provided from the application:

. /opt/intel/cce/10.1.017/bin/iccvars.sh

Change your password

Login on the master of your cluster and call passwd. You will be asked once for your existing
password and twice for the new one. There are some checks that you won't choose a too simple
one.

root is able to change the passwords of other users. Call passwd <user>. You will be asked twice
for the new password. The checks against simple passwords are also done, but not enforced.

Accessing a node

You are able to use ssh, rlogin and rsh without a password inside the cluster. You find the full
list of nodes in /etc/hosts. X11 is enabled automatically inside the cluster. Each node is able to
open a window on your desktop.

Distributing commands and files

Quite often you have to execute a command on all nodes or copy out a file to them. The DALCO
Cluster Suite provides the C3 tools 9) with the commands cexec and cpush. Some examples:

Executing a command on all nodes

$ cexec uptime
************************* cluster *************************
--------- node01---------
 10:00:30 up 1 min, 0 users, load average: 1.87, 0.73, 0.26
--------- node02---------
 10:00:31 up 1 min, 0 users, load average: 2.84, 1.24, 0.46

You are able to cexecing anything which doesn't read from your terminal - so avoid programs like
vi.

Pushing out a file

$ cpush /scratch/mybiginputfile
building file list ... done
building file list ... done
mybiginputfile
mybiginputfile

sent 91 bytes received 60 bytes 100.67 bytes/sec

10.02.2010 15:46:17 19

total size is 1862 speedup is 12.33

sent 91 bytes received 60 bytes 100.67 bytes/sec
total size is 1862 speedup is 12.33

cpush accepts an additional parameter as destination directory. Use cpush /home/file
/scratch as an example.

cpush doesn't allow to copy a directory, only files. We create usually a tar of the specific directory,
copy it to the nodes using cpush and unpack them in a cexec call.

Finding a process

$ cexec "ps aux | grep myprog | grep -v grep"
************************* cluster *************************
--------- node01---------
dalco 3871 0.0 0.2 1716 648 ? Ss 09:59 0:00 ./myprog
--------- node02---------
dalco 3870 0.0 0.2 1720 652 ? Ss 09:59 0:00 ./myprog

Listing your processes

$ cexec "ps aux | grep ^dalco"
************************* cluster *************************
--------- node01---------
dalco 4738 0.0 0.7 3476 1844 ? Rs 10:03 0:00 orted --bootproxy 1 --name 0.0.1 --num_procs 3 --vpid_start 0 --nodename node01 --universe dalco@master:default-universe-8355 --nsreplica 0.0.0;tcp://10.0.2.15:39781;tcp://192.168.100.1:39781 --gprreplica 0.0.0;tcp://10.0.2.15:39781;tcp://192.168.100.1:39781
dalco 4739 93.7 1.1 6464 3036 ? R 10:03 0:07 ./mping 0 1k
--------- node02---------
dalco 4737 0.2 0.7 3476 1844 ? Ss 10:03 0:00 orted --bootproxy 1 --name 0.0.2 --num_procs 3 --vpid_start 0 --nodename node02 --universe dalco@master:default-universe-8355 --nsreplica 0.0.0;tcp://10.0.2.15:39781;tcp://192.168.100.1:39781 --gprreplica 0.0.0;tcp://10.0.2.15:39781;tcp://192.168.100.1:39781
dalco 4738 97.7 1.2 14668 3284 ? R 10:03 0:07 ./mping 0 1k

1) http://www.chiark.greenend.org.uk/~sgtatham/putty/
2) http://www.straightrunning.com/XmingNotes/
3) http://www.realvnc.com/
4) http://www.tightvnc.com/
5) http://freenx.berlios.de/
6) http://www.nomachine.com/download.php
7) http://winscp.net/
8) http://cyberduck.ch/
9) http://www.csm.ornl.gov/torc/C3/

10.02.2010 15:46:17 20

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.straightrunning.com/XmingNotes/
http://www.realvnc.com/
http://www.tightvnc.com/
http://freenx.berlios.de/
http://www.nomachine.com/download.php
http://winscp.net/
http://cyberduck.ch/
http://www.csm.ornl.gov/torc/C3/

Administrators Tasks
In daily practise we see some tasks which must be done frequently. Most of them are the same as
for administrating a stand alone Linux workstation or a server. Some are a bit special as you need
to keep all nodes in sync.

Your first step will be a terminal connected to the cluster. You need the name or the IP address of
the master. Most tasks should be done as a regular user, for administrative tasks you need to have
the root password.

Booting and shutdown

There are some dependencies between the master and the nodes. This enforce you to fully boot the
master before booting the nodes. In of case one or more nodes are booted before the master finish
it's boot process, you'll find shared directories like /home empty. The nodes won't appear in the job
scheduler. There is no danger jobs will be started on nodes missing their NFS mounts.

To fix such an issue, reboot the nodes again:

cexec /sbin/reboot

They will start, reach all resources and integrate themself to the job scheduler.

To shutdown the cluster first shutdown the nodes:

cexec /sbin/poweroff

After successful shutdown of all nodes, power off the master:

poweroff

Adding users

Add users with the distribution's tools like YaST, system-config-users or simply by editing the
files in /etc and creating the home directory. Distrbute the changes using clusterSyncFiles.
This updates all nodes and also the file used during installation.

The homedirectory created in /home is always distributed over all nodes using NFS.

Be sure to have all nodes up and running when using clusterSyncFiles. A node which is offline
won't get the new file. One workaround is to set the node in the installation mode by using
setDefault <nodename> install. Another possibility is to run clusterSyncFiles once
again when the node is back in production.

Installing software

We see several different ways how software vendors packs their programs. There is no common
way as the distributions itself are different and the programmers often prefere their own installation
mechanism. Instead of relaying on a single way, we implemented different hooks to automate the
installation process during the reinstallation of a node. Choose the appropriate way to install your

10.02.2010 15:46:17 21

software:

Software used by a single user

The easiest way is to follow the install instructions by the software distributor and install the package
into the personal home. Probably you have to set some environment variables in ~/.bashrc.

This is the only usable way when the user actively develops his package.

Packages provided by the distribution

Locate the software package in the local installation source. It's somewehere in in /opt/cluster.
Install it on the master and on the nodes:

RedHat based installations:

rpm -i /opt/cluster/redhat/.../mycoollib-1.0.rpm
cexec rpm -i /opt/cluster/redhat/.../mycoollib-1.0.rpm

or when RHN is configured:

yum install mycoollib
cexec yum install mycoollib

SLES11, OpenSuSE >= 10.3 based installation:

zypper install mycoollib
cexec zypper install mycoollib

SLES10, OpenSuSE 10.1/10.2 based installation:

rug install mycoollib
cexec rug install mycoollib

Debian based installation:

apt-get install mycoollib
cexec apt-get install -y mycoollib

Now add the package to the automated installation process. Edit
/opt/cluster/admin/generateKS / /opt/cluster/admin/generateAY, add the package
to the list and rerun the script.

RPM packages provided by the software vendor

Put the packages into /opt/cluster/spool. Install them on the master and on the nodes:

rpm -i /opt/cluster/spool/mycoolpackage.rpm
cexec rpm -i /opt/cluster/spool/mycoolpackage.rpm

To autoinstall the package add it to /opt/cluster/admin/firstboot.sh, near our own
examples:

10.02.2010 15:46:17 22

#---
MyCoolPackage
rpm -i /opt/cluster/spool/mycoolpackage.rpm

Check /root/firstboot.log after a fresh installation for errors.

DEB packages provided by the software vendor

Put the packages into /opt/cluster/spool. Install them on the master and on the nodes:

dpkg -i /opt/cluster/spool/mycoolpackage.rpm
cexec dpkg -i /opt/cluster/spool/mycoolpackage.rpm

To autoinstall the package add it to /opt/cluster/admin/firstboot.sh, near our own
examples:

#---
MyCoolPackage
dpkg -i /opt/cluster/spool/mycoolpackage.rpm

Check /root/firstboot.log after a fresh installation for errors.

Software distributed with an installer

Run the installer on the master. Using /opt is not a bad idea. In this example, I install
MyCoolSoftware in /opt/mycoolsoft. Now pack and distribute the software over the nodes:

cd /
tar cfj /opt/cluster/spool/mycoolsoftware.tar.bz2 opt/mycoolsoft
cexec "cd /; tar xfj /opt/cluster/spool/mycoolsoftware.tar.bz2 opt/mycoolsoft

To autoinstall the package add it to /opt/cluster/admin/firstboot.sh, near our own
examples:

#---
MyCoolSoftware
cd /
tar xfj /opt/cluster/spool/mycoolsoftware.tar.bz2
cd $OLDPWD

There are some software packages which doesn't support this approach. You'll find the software not
running, usually missing some files, when started on a node. This is the worst case. You have to
find a way to automate the installer.

Do a manual installation on each node individually or use the automated installer in a cexec call.

We place the installer files in /opt/cluster/spool and add the installer call to
/opt/cluster/admin/firstboot.sh:

#---
MyNotSoCoolSoftware
cd /opt/cluster/spool
./install -auto -yes -reallyyes
cd $OLDPWD

10.02.2010 15:46:17 23

Check /root/firstboot.log after a fresh installation for errors.

Software distributed as source

Compile and place the software in a central directory. GNU Autoconf based packages allows the
usage of the –prefix paramter. In the following example, we build a hello 1):

mkdir /root/kits/hello
cd /root/kits/hello
wget http://ftp.gnu.org/gnu/hello/hello-2.3.tar.gz
tar xvfz hello-2.3.tar.gz
cd hello-2.3
./configure --prefix=/opt/hello
make
make install
cd /
tar cvfj /opt/cluster/spool/hello.tar.bz2 opt/hello
cexec "cd /; tar xfj /opt/cluster/spool/hello.tar.bz2"

Now add the installation of hello to /opt/cluster/admin/firstboot.sh:

#---
GNU Hello
cd /
tar xfj /opt/cluster/spool/hello.tar.bz2
cd $OLDPWD

Advice the user how to use the software. Usually they'll have to add some environment variables to
their ~/.bashrc:

PATH=/opt/hello/bin:$PATH
LD_LIBRARY_PATH=/opt/hello/lib:$LD_LIBRARY_PATH
export PATH LD_LIBRARY_PATH

Backup

In the initial design, the nodes dont't contain any user data. As long as your users dont't place data
on the nodes itself there is no need to do backups of the nodes. If you change the installation, you
have to keep the installation process in sync.

It's different on the master. It contains all the users data, the configuration and the software needed
for your daily work. Even we did our best to protect your data with a RAID controller and reliable
filesystems. There are cases where you need a recent backup of the data and the system.

In case of questions contact our support. We have several different solutions for backups. We are
sure there is also the perfect solution for your needs.

1) http://www.gnu.org/software/hello/

10.02.2010 15:46:17 24

http://www.gnu.org/software/hello/

Managing Infiniband
Infiniband is a specialized networking technology for short area networks. Think about a cluster
wide network or a data center wide network. Compared with Ethernet Infiniband offers you more
ways to transmit data. Not only TCP/IP, but also reliable stream, message and block passing. Most
important for HPC is the ability to do RDMA, remote direct memory access. This is used by MPI to
pass messages between nodes without the help of the kernel.

On top of Infiniband you find a software stack called OFED, the OpenFabrics Enterprise
Distribution. Depending on your environment, we preinstalled the official OFED distribution 1), some
vendor specific OFED package or the base support which is included into the Linux kernel.

Subnet manager

While Ethernet only allows simple Fat tree setups, Infiniband allows near any network topology. Fat
trees, clos networks and even rings are possible. The data is routed in a way which provides you
the best possible bandwith of your network.

Distibution the LID, the local id and the routing tables is done by the Subnet Manager. This is a
daemon running on one or more of the nodes attached to the Infiniband fabric. It polls the current
network once every 10 seconds and modifies the routing tables in the switches. You may have
more then one Subnet Manager in your network, but only one of them is active.

As long as no Subnet Manager is running, the fabric doesn't forward any data. In this case, check
for the process opensmd, start it using /etc/init.d/opensmd start and check it's logfile in
/var/log/opensm.log.

Checking connectivity

We configured on each node equipped with an Infiniband card an IP using IPoIB, IP over Infiniband.
Use a simple ping to check the connectivity:

node01:~ # ping node02i
PING node02i (192.168.1.102) 56(84) bytes of data.
64 bytes from node02i (192.168.1.102): icmp_seq=1 ttl=64 time=0.061 ms
64 bytes from node02i (192.168.1.102): icmp_seq=2 ttl=64 time=0.063 ms
64 bytes from node02i (192.168.1.102): icmp_seq=3 ttl=64 time=0.059 ms

--- node02i ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.059/0.061/0.063/0.001 ms

Checking for errors

Infiniband uses the highest available data rates on the wire. This results in constraints in the cable
lenght and gives errors in case of badly plugged cables. We preinstalled tools to help you find bad
connections.

Display the current error counters:

node01:~ # ibcheckerrors

10.02.2010 15:46:17 25

#warn: counter XmtDiscards = 1505 (threshold 100) lid 3 port 1
Error check on lid 3 (node02 HCA-1) port 1: FAILED

Summary: 2 nodes checked, 0 bad nodes found
2 ports checked, 1 ports have errors beyond threshold

Reset the error counters:

node01:~ # ibclearerrors

Summary: 2 nodes cleared 0 errors

It's not uncommon that the counters will show you bad values after a boot of a node or a power
cycle of a switch. Reset them and recheck the counters some time later.

1) http://www.openfabrics.org/

10.02.2010 15:46:17 26

http://www.openfabrics.org/

Monitoring the cluster
Several tools are installed to provide an overview about the cluster and it's load. You will get a
feeling how your cluster behave during the daily usage. Each system is a bit different and a situation
which is a problem for one cluster is a normal condition on another.

Worst things are usually orphan processes which consumes CPU but don't do any useful work and
overbooking of memory or disk. Recongizing such situations helps you to maximize the output of
the system.

Webinterface

A simple webinterface offers a current view of the running nodes and alerts you in case of an
overload. It collects load statistics over the last year. There are no access restrictions. It is completly
read only. You can't destroy anything by trying it out!

Cluster health informs you about the state of the master an the nodes. Each row is a system. The
columns are the services. Our monitoring knows about the typical usage of a cluster. It don't alert
you when you completly fill a node with processes. But you'll get informed as soon as two jobs are
running the same time:

10.02.2010 15:46:17 27

Cluster load shows you the long term statistics of various metrics like load, memory and cpu usage:

Command line

While logged in on the master, there are some simple commands to see what's going on. Get a list
of working nodes:

cexec uptime
************************* cluster *************************
--------- node01---------
 13:50:40 up 3:51, 0 users, load average: 0.00, 0.01, 0.00
--------- node02---------
 13:50:40 up 3:51, 0 users, load average: 0.00, 0.00, 0.00

10.02.2010 15:46:17 28

This system is currently idle. The load is calculated for the last one, five and fiteen minutes. It
counts all processes waiting for or running on CPU and waiting for disk access. A load of the same
value as you have CPUs in the node is a good sign.

In case you have an overloaded node, login by ssh and run top:

top - 13:55:11 up 3:56, 1 user, load average: 0.15, 0.04, 0.01
Tasks: 53 total, 3 running, 50 sleeping, 0 stopped, 0 zombie
Cpu(s): 10.3%us, 85.4%sy, 0.0%ni, 0.0%id, 0.0%wa, 4.2%hi, 0.0%si, 0.0%st
Mem: 255604k total, 134284k used, 121320k free, 24584k buffers
Swap: 1052248k total, 0k used, 1052248k free, 73508k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 5680 dalco 25 0 6472 3036 2228 R 99.5 1.2 0:08.49 mping
 296 root 10 -5 0 0 0 S 0.5 0.0 0:00.23 kjournald
 1 root 15 0 2060 652 560 S 0.0 0.3 0:00.89 init
 2 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/0

It's the same node as before. There is a shortly started process and the load goes slowly up. We
see a process mping run by user dalco. It consumes near 100% of the available CPU. It is a small
program as it consumes just 1.5% memory.

To get the amount of usable memory, take the total amount (255604k) minus the amount of used
memory (134284k) plus the buffers (24584k) plus the cache (73508k). This node would be able to
run processes up to 219MBytes without swapping.

Use kill <PID> to kill a process. When it doesn't disappears use kill -9 <PID> to force the
exit. You are able to kill your own processes. root is able to kill any. A second command called
killall <programname> allows you to kill all processes running a specific program.

Another useful source of information is /var/log/messages. Use less /var/log/messages
to navigate through the file. tail -f /var/log/messages to get a realtime view.

10.02.2010 15:46:17 29

Using the cluster
Most of our customers uses the cluster like a service, a mailserver or an intranet server. You log in,
probably you'll transfer data to it, compile and debug code and submit your programs to the batch
scheduler.

Your first step will be a terminal connected to the cluster. You need the name or the IP address of
the master. Additional, you need a personal login and password provided by your system
administrator.

Compiling and installing software

Usually common software is installed for all users of the cluster. There are also specific needs to
build and install your own software. Mostly in cases where you are actively developing your own
code. We advise to put anything in your home. Using this approach you have the code available on
all the nodes. But take care to not overfill your home as your administrator (or yourself) won't be
happy when all available diskspace is used by your home.

In the base installation, you'll find all GNU development tools. Sometimes we also install additional
compilers which creates more efficient code. Compilation and debugging is usually done on the
master, using small datasets.

Parallel code should be compiled using mpicc, mpiccx, mpif70 or mpif90. Don't try to link the
needed libraries using standard gcc and ld as this approach creates non portable build scripts and
makefiles.

Probably there are more then one MPI implementation installed on your cluster. Use
mpi-selector-menu to check which one is system wide default. Or to change your personal
setting. Log out and in to activate a change. Be sure to run your code with the same MPI as you
used for building.

Running your code

For debugging purposes, you usually run your programs directly on the master. Using a debugger
like gdb or simply strace is near impossible when submitting jobs to batch.

You have also the possibility to run your code on a node. Choose a free one and login there using
ssh. The full list of nodes is available in /etc/hosts.

Runing MPI jobs

The following approach works with all MPICH1 based MPI implementations, with OpenMPI and also
with HP-MPI.

To run MPI jobs, you'll have to prepare a list of nodes running your job. Take care your list has an
entry for each CPU you'll allocate using mpirun. Take care you'll never allocate more CPUs as
available on a node. A simple example looks like this:

$ cat machinefile
node01

10.02.2010 15:46:17 30

node01
node02
node02

The command to start your program looks like this:

$ mpirun -np 4 -machinefile machinefile ./yourprogram your paramters

Running MPICH2 jobs

MPICH2 brought a new concept for starting MPI jobs. The idea was to support also systems like
Windows without rsh/ssh. When using MPICH2, LAM-MPI and also Intel MPI you need to prepare
some stuff before starting your jobs.

First create a file containing a secret for the communication:

$ cat ~/.mpd.conf
MPD_SECRETWORD=secret

This step is only needed once per user. Choose a good secret, different to your login password on
the cluster.

Create a list containing the nodes you will use for your job. One line per node even it has more then
one CPU:

$ cat mpd.hosts
node01
node02

Now it's time to fire up your mpds. The nodecount -n it the number of nodes incremented by one.
The master also runs an instance:

$ mpdboot -f mpd.hosts -n 3

To check if the mpds are running, submit a small command to them:

$ mpiexec -np 3 hostname
master.cluster
node01.cluster
node02.cluster

For the job execution itself you need a second file containing one line per CPU:

$ cat machinefile
node01
node01
node02
node02

The command to start your program looks like this:

$ mpiexec -machinefile machinefile -n 4./yourprogram your paramters

After running your jobs, please clean up your mpds:

10.02.2010 15:46:17 31

$ mpdallexit

Running PVM jobs

PVM uses a slightly different approach then MPI to distribute workload. You start up a PVM daemon
on all nodes you plan to use and your application spawns children using the PVM API. It is not
uncommon that the controlling program and the workers are not the same binary. PVM supports
different architectures, even we see today a monoculture of AMD64/EM64T capable nodes.
Workers may be spawned or ended during calculation.

PVM needs to find it's libraries and binaries. You have to set the environment vairable PVM_ROOT
to the installation base of your PVM directory:

$ cat .bashrc
...
export PVM_ROOT=/usr/lib/pvm3
...

Create a list of nodes you plan to use in your PVM job:

$ cat pvmhosts
node01
node02

Start the PVM environment by calling pvm. You get a prompt. Check for the availability of the nodes
and quit pvm:

$ pvm pvmhosts
pvm> conf
conf
2 hosts, 1 data format
 HOST DTID ARCH SPEED DSIG
 node01.cluster 40000 LINUX64 1000 0x00408841
 node02.cluster 40000 LINUX64 1000 0x00408842
pvm> quit
quit

Console: exit handler called
pvmd still running.

The PVM daemons are now running. Call your application and tell it how many processes should be
started.

During the job run, pvm allows you to track the state of your processes:

$ pvm
pvm> ps
ps
 HOST TID FLAG 0x COMMAND
 node01.cluster 40002 4/c -
 node01.cluster 40003 6/c,f
 /home/dalco/povray/bin/pvmpov-3.50c
 node02.cluster 40004 6/c,f
 /home/dalco/povray/bin/pvmpov-3.50c
pvm> quit
quit

10.02.2010 15:46:17 32

Console: exit handler called
pvmd still running.

After calculation, please stop all the pvmds:

$ pvm
pvm> halt
halt
Terminated

PVM uses TCP/IP only for the communication between the workers. To take the advantage of a
high speed interconnect, you have to reroute the traffic over the provided alternative IP addresses.
The argument ip in the pvmhosts must be set to the IP address of the interconnect interface:

$ cat pvmhosts
node01 ip=192.0.1.1
node02 ip=192.0.1.2

Some interconnects like Myrinet provides additional improvements by using an alternative Socket
interface. Please contact our support for help to set up your environamnt.

Use the job scheduler!

Now comes the problem: You'll never know if your node or your nodes are really free or if someone
else is allready using them. For this reason, you should use the job scheduler which knows about
the used nodes and keep it free for you until your job is finished.

Or at least you'll have to discuss with the other cluster users, that you are planning to run jobs.

Running two jobs at the same time an a CPU consumes much more time then running the jobs one
after the other. The switching between processes takes several thousends of CPU cycles and
happens several times per second.

10.02.2010 15:46:17 33

Using the Grid Engine
When sharing a cluster between several people, the risk of running jobs concurrent is high. This is a
big disadvantage for the performance. Two concurrent jobs needs much longer as the same jobs
one after the other. A lot of CPU cycles is wasted by the kernel for switching between both
processes.

Additional you get the benefit of a queue, which allows you to submit jobs and enjoy your free time
while your cluster is busy finishing it's work.

Listing available nodes and CPUs

The command qhost displays you a list of all available nodes, the amount of CPUs and memory in
each one of them:

[dalco@master ~]$ qhost
HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -
node01 lx24-x86 2 0.03 249.6M 33.8M 1.0G 0.0
node02 lx24-x86 2 0.06 249.6M 33.7M 1.0G 0.0

In this case, we have two nodes, each one with two CPUs and 1Gig of memory. Both are mostly
idle.

Running interactive work

The master of your cluster is typically the location to do the pre- and postprocessing of your data
and to develop and debug your code. From time to time it makes sense to allocate a CPU or a node
and do processing intensive work there. The Grid Engine offers a command called qrsh which
allocates the resources and logs you in in the reserved node.

Start such a session using qrsh:

master$ qrsh
node01$

You get a slot aka one cpu reserved until you log out of the shell. Check your allocation by using
qstat:

$ qstat
job-ID prior name user state submit/start at queue slots
--
 6 0.55500 QRLOGIN dalco r 11/26/2008 10:46:58 all.q@node02.cluster 1

For larger computations, you should allocate a full node. Since the version 6.2u3 the Grid Engine
offers the possibility to use a node in exclusive mode:

master$ qrsh -l excl=true
node01$

10.02.2010 15:46:17 34

Another way is to explicitly allocate all the CPUs in a node by using the parallel environment smp.
Using this approach it is also possible to use a part of a node and left the other ressources free for
different jobs. Get the number of CPUs per node from qhosts:

master$ qrsh -pe smp 2
node01$

qstat shows the allocated amount of CPUs:

$ qstat
job-ID prior name user state submit/start at queue slots
--
 8 0.55500 QRLOGIN dalco r 11/26/2008 10:46:58 all.q@node02.cluster 2

qstat by default only lists your jobs. Use qstat -u '*' to display the jobs of all users. To make
this behaviour default, create a file in your homedirectory containing one line:

$ cat .sge_qstat
-u *

qrsh is limited. In cases the cluster is fully loaded, you'll get an error message:

$ qrsh -pe smp 2
Your "qrsh" request could not be scheduled, try again later.

Submit a serial job

The real power of the Grid Engine is to process batch jobs. You have to create a job file and submit
it to the batch scheduler. A simple example:

$ cat example.sub
#!/bin/sh
#$ -N test
#$ -S /bin/sh
#$ -cwd
#$ -j y
#$ -m eas

hostname

The lines starting with #$ are parameters for the Grid Engine. You find all of them in the manpage
of qsub. We use the following in our example:

-N test is the name of the job•
-S /bin/sh selects the shell used to execute the jobfile, default is csh which is probably
not the one you like

•

-cwd means that the job is started in the current working directory, default is the home•
-j y merges STDOUT and STDERR in the same file•
-m eas sends you a mail as soon as the job is finished or crashed•

Submit this job using qsub:

$ qsub example.sub
Your job 9 ("test") has been submitted

10.02.2010 15:46:17 35

Monitor your job using qstat as described before. Once your job is finished, you'll get the output of
our job in the logfiles:

$ ls
example.sub test.o9

$ cat test.o9
node01.cluster

Submit a job using a full node

Using the simple approach, you get a slot, which typically means a CPU and not a full node. This is
great for simple serial applications. From time to time it makes sense to allocate a full node to run a
program. Since Grid Engine 6.2u3 we have the possibility to run a job on a node in exclusive mode.

Your job script gets an additional line:

$ cat full.sub
#!/bin/sh
#$ -N test
#$ -S /bin/sh
#$ -cwd
#$ -j y
#$ -m eas
#$ -l excl=true

hostname

The new parameter:

-l excl=true forces the allocation of a full node for your job•

Submit this job using qsub:

$ qsub full.sub
Your job 10 ("test") has been submitted

Monitor your job using qstat as described before. Once finished, you'll get the output of our job in
the logfiles:

$ ls
full.sub test.o10

$ cat test.010
node01.cluster

Submit a job using more then one CPU

For threaded programs like OpenMP codes you should allocate the amount of used CPUs by your
program. In this case, use the parallel environment smp and allocate more then one or all CPUs you
have in the node. Check the amount of available CPUs by using qhost.

So your job file gets an additional line:

$ cat large.sub

10.02.2010 15:46:17 36

#!/bin/sh
#$ -N test
#$ -S /bin/sh
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe smp 2

hostname

The new parameter:

-pe smp 2 will allocate two CPUs•

Be sure you don't allocate more CPUs then a single node has. It won't be executed.

Submit this job using qsub:

$ qsub large.sub
Your job 11 ("test") has been submitted

Monitor your job using qstat as described before. Once finished, you'll get the output of our job in
the logfiles:

$ ls
large.sub test.o11

$ cat test.011
node01.cluster

Submit MPI jobs

Each MPI flavor has some differencies in the way how to start a job. The usual cases are allready
configured in your Grid Engine installation:

Submit MPICH jobs

MPICH needs a machinefile with a line per process. The Grid Engine prepare this file and you only
need to pass it to your mpirun command:

$ cat mpich.sub
#!/bin/sh
#$ -N test
#$ -S /bin/sh
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe mpich 2

mpirun -np $NSLOTS -machinefile $TMPDIR/machines ./yourprogram your paramters

You see a new paramter:

-pe mpich 2 tells the Grid Engine to use the scripts for MPICH and you want to allocate
two CPUs

•

10.02.2010 15:46:17 37

You have the possibility to choose a range of CPUs. Using -pe mpich 2-4 would try to allocate
four CPUs, but adjust it down to two in case four are not available. The Grid Engine pass the
amount of allocated CPUs in the environment variable $NSLOTS which is then passed to mpirun.
Of course, your code must be able to work on a dynamic amount of CPUs before you use it this
way.

Submit this job using qsub:

$ qsub mpich.sub
Your job 12 ("test") has been submitted

Monitor your job using qstat as described before. Once finished, you'll get the output of our job in
the logfiles:

$ ls
mpich.sub test.o12 test.po12

The .o file contains the output of your program, the .po file the messages produced during the setup
of the parallel environment.

Submit OpenMPI jobs

OpenMPI understands the environment passed by the Grid Engine and use back the Grid Engine
features to start it's children. We have prepared a dedicated parallel environment for OpenMPI, your
job script needs to look a bit different:

$ cat openmpi.sub
#!/bin/sh
#$ -N test
#$ -S /bin/sh
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe orte 2

mpirun -np $NSLOTS ./yourprogram your paramters

In this case, we use the parallel environment orte and we do not pass the machinefile as OpenMPI
uses the internal data from the Grid Engine.

Submit this job using qsub:

$ qsub openmpi.sub
Your job 13 ("test") has been submitted

Monitor your job using qstat as described before. Once finished, you'll get the output of our job in
the logfiles:

$ ls
openmpi.sub test.o13 test.po13

The .o file contains the output of your program, the .po file the messages produced during the setup
of the parallel environment and is always empty in this case.

10.02.2010 15:46:17 38

Submit generic MPI jobs

The former two examples were tight integrated into the Grid Engine. The advantage is the full
control of the Grid Engine over all processes of the job. This allows a clean shutdown of the job and
full accounting.

Several commercial applications use their own wrappers. A tight integration of MPICH2, LAM-MPI
or Intel MPI is technically possible, but requires dedicated setup for each flavor and version of the
used MPI impelementation.

We provide a generic parallel environment called mpi. It simply reserves the nodes for you and
provides a machinefile. No additional tasks are done by the Grid Engine until the job is finished. You
have the full control over your job in your sumbission script.

An example of a script for a MPICH based job:

#!/bin/sh
#$ -N test
#$ -S /bin/sh
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe mpi 2

mpirun -np $NSLOTS -machinefile $TMPDIR/machines ./yourprogram your paramters

In this case, we use the parallel environment mpi and allocate two slots. Any MPICH, OpenMPI or
HP-MPI based application which requests a list of nodes could be started by this approach. An
exmaple how to start Fluent which uses a script starting all the parts of a Fluent calculation:

#!/bin/sh
#$ -N test
#$ -S /bin/sh
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe mpi 2

fluent 3d -g -nosge -t$NSLOTS -cnf=$TMPDIR/machines -i job.in

MPICH2 and Intel MPI needs an mpd started in advance. We must take care that each job has it's
own mpd ring by providing an environment variable MPD_CON_EXT with a unique value for each job.
Otherwise the mpdallexit at the end of the job may kill an mpd ring of a different job from the
same user.

#!/bin/sh
#$ -N test
#$ -S /bin/sh
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe mpi 2

export MPD_CON_EXT="sge_$JOB_ID.$TASK_ID"
sort -u < $TMPDIR/machines > $TMPDIR/mpdhosts
mpdboot -n `wc -l < $TMPDIR/mpdhosts` -f $TMPDIR/mpdhosts
mpiexec -machinefile $TMPDIR/machines -n $NSLOTS ./yourprogram your paramters

10.02.2010 15:46:17 39

mpdallexit
rm -f $TMPDIR/mpdhosts

Based on this code snippets, you should be able to integrate any parallel application into the Grid
Engine. Don't hesitate to ask us in case of troubles.

Submit PVM jobs

The Grid Engine takes care to start the needed pvmds and your initial program. During job run, your
program is responsible to spwan and end the workers. After running your program, the pvmds are
cleaned up. In case of a kill of your job, the Grid Engine will take care to kill all orphan processes.
Each job gets an individual Virtual Machine ID to allow multiple jobs from the same user.

A typical submission script for a PVM job:

#!/bin/sh
#$ -N test
#$ -S /bin/sh
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe pvm 2

/path/to/your/binary -numproc $NSLOTS

Most difficult part in a PVM job is to find the worker binaries. When using the same binary for
controlling the job and doing the calculation, it is usually enough to specify the full path to the binary.
It is able to use ARGV[0] as an argument to spawn the children. When using different binaries, ask
your system administrator to add the path to the pvm parallel environment.

Additional changes to the parallel environment are needed to use the adavantage of a high speed
interconnect. Please ask your system administrator or contact our support.

Kill a job

Getting rid of a job is quite simple. Use qstat to get the job id and use it in qdel:

$ qdel 1234

The system administrator is able to kill any job. You are only able to kill your own. As long as the job
is not yet in the execution phase, it will be thrown out of the queue. When the job is allready running
all children are killed using a kill -9.

Troubleshooting

Probably you'll see jobs which were never executed. Use qstat -j jobid to see why the
scheduler is not happy with your job:

$ qstat -j 13
job_number: 13
...
scheduling info: cannot run in PE "smp" because it only offers 2 slots

10.02.2010 15:46:17 40

In this case, the parallel environment smp was used with more slots then a node has available.

10.02.2010 15:46:17 41

Examples
There are may parallel applications available which uses clusters to improve speed and accurancy
of the results. For simple examples, we looked for a small application which uses several ways of
parallelizing and also produces some nice results. We found a great example in POV-Ray 1), a
raytraycer available in source. The community provided several patches allowing to spread the
calculation using threads, MPI and PVM. A small scene, made of a glass desk, a pin board and two
cubes gives you a nice result:

Everything needed to reproduce the result is kept in dalco's account. Login as this user, start the
examples and have fun!

Serial jobs

A large amount of calculation problems knows a natural parallelizing. Have a look on a movie: Each
second of a movie is made up of 24 individual frames, 86'400 frames per hour. It is usually not
worth to split up the calculation of a single frame. The easier approach is to see each frame as an
individual job. A similar parallelism is used in Monte Carlo simulations used in physics. Processing
data from a collider, an earthquake or an oil epxploration is also such a case.

The Grid Eninge knows about array jobs which helps you to simplify the creation of your submission
files. One single submission may process several thousends of data patterns in a efficient way.

Slighty different is the real time processing of small data sets in a financial application. It's usually
also a single task, but it must be processed as soon as possible. For such clusters, we use a
different set up of the Gird Engine to increase the responsiveness of your application.

10.02.2010 15:46:17 42

Building POV-Ray

There is no need to adjust anything in the code of the program. It is only necessairy that the
program doesn't need any interactive input during the calculation.

You find two versions of POV-Ray in the dalco account. 3.50c is the one we use also for MPI and
PVM, 3.6.1 is the latest stable release. Rebuilding them is straithtforward:

cd ~/povray/src/povray-3.50c
./configure --prefix=$HOME/povray --program-suffix=-3.50c
make
make install
make clean

and

cd ~/povray/src/povray-3.6.1
./configure --prefix=$HOME/povray --program-suffix=-3.61 \
COMPILED_BY="Beat Rubischon <beat.rubischon@dalco.ch>"
make
make install
make clean

We add the path to the binaries to our .bashrc for a convenient access to them:

export PATH=~/povray/bin:$PATH

Testing

Change into the directory containing the scene and run POV-Ray:

cd ~/pinart
povray-3.50c pinart.pov

cd ~/pinart
povray-3.61 pinart.pov

Download the resulting pinart.png or view it by using display pinart.png.

Submitting to batch

Now we set up a submission file and send the job to the Grid Engine. Create the file
pinart-serial.sub:

#!/bin/bash

#$ -N Pinart
#$ -S /bin/bash
#$ -cwd
#$ -j y
#$ -m eas

Run a simple serial job on one core
Output is a file using the GE job id in it's name

POVRAY=povray-3.50c

10.02.2010 15:46:17 43

WIDTH=1280
HEIGHT=1024
IN=pinart.pov
OUT=Pinart-$JOB_ID.png

$POVRAY -w$WIDTH -h$HEIGHT -O$OUT $IN

Sunmit this file:

$ qsub pinart-serial.sub

Track your job using qstat. As soon it is executed, change to the node listet in qstat and watch
the processing using top. It will use a single core.

When submitting multiple jobs, the Grid Engine will fill up the nodes with the same amount of jobs
as cores are available.

Shared memory

Using the SMP approach, you get simple applications with an improved calculation speed. Several
CPUs are doing their work on the same set of data. No worry about distibuting your data and
passing messages between the jobs.

At least three approaches are common. Using shared memory between independend processes is
the first. SystemV shared memory or mmap() /dev/null before fork() are common. We see
this approach in several commercial applications with an old codebase.

Threading is the most widely used approach. Using POSIX threads, you mark subroutines in your
code which should be run by a different CPU. You must take care of protecting your data from
concurrent access. POSIX threads offers several tools like semaphores or queues. All libraries used
by your program must be thread save. This means they are using private memory spaces for
temporary data.

A relatively new approach is OpenMP. It uses POSIX threads, but you have not to write explicit
code to use them. OpenMP use compiler directives to mark loops which could be run in parallel.
The benefit of using OpenMP is not so big compared with a implicit threading, otherwise it is really
simple to improve existing code.

All SMP approaches are limited by the size of a single node. Your application can't be spreaded
over more then one system. We see often so called fat nodes in a cluster. This are dedicated nodes
without an interconnect, but with a hughe amount of memory and typically more CPU cores.

Building POV-Ray

The current development versions of POV-Ray supports SMP using a threading helper library called
BOOST 2). Your cluster provides all needed development headers and building is simple:

cd ~/povray/src/povray-3.7.0.beta.32
./configure --prefix=$HOME/povray --program-suffix=-3.70.beta.32 \
COMPILED_BY="Beat Rubischon <beat.rubischon@dalco.ch>" \
--with-boost-thread=boost_thread-mt
make
make install

10.02.2010 15:46:17 44

make clean

Testing

Change into the directory containing your scene and call POV-Ray:

povray-3.70.beta.32 pinart.pov

Download the resulting pinart.png or view it by using display pinart.png.

Submitting to batch

Now we set up a submission file and send the job to the Grid Engine. Create the file
pinart-smp.sub:

#!/bin/bash

#$ -N Pinart
#$ -S /bin/bash
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe smp 8

Run a threaded job using all cores in a node
Output is a file using the GE job id in it's name

POVRAY=povray-3.70.beta.32
WIDTH=1280
HEIGHT=1024
IN=pinart.pov
OUT=Pinart-$JOB_ID.png

$POVRAY -w$WIDTH -h$HEIGHT -O$OUT $IN

Sunmit this file:

$ qsub pinart-smp.sub

Track your job using qstat. As soon as it is executed, change to the node listet in qstat and
watch the processing using top. You will see a process consuming all available CPU power.

POV-Ray detects the amount of available CPU cores and runs the same amount of threads. You
will see the process running at 400% CPU load on a four core system and on 800% on a eight core
system. Take care to run only a single job on a node to avoid overbooking. This will result in a poor
performance. The task switching between two processes or threads consumes a lot of CPU cycles.

MPI Jobs

MPI is the de facto standard for parallel applications. It is a basic library providing a standardized
interface for sending and receiving messages. Additional, MPI will take care to start all the
processes needed for the job.

You won't get a parallel application by simply linking your code to the MPI library. It is only the

10.02.2010 15:46:17 45

message passing layer. Not more, not less. Your first step in building a parallel code is to think
about the distribution of data and how it will be processed by the CPUs.

In the case of a raytracer, each process needs the full information of the scene. The master process
then gives out the job of calculation a scanline to a worker. This approach is quite simple, but
results in a a lot of redundant data spreaded over your cluster. For large problems, you have to split
your input data and use messages for the interface between the processes.

MPI is an open standard with several implementations. More precise it is currently diveded into two
standards, MPI1 and MPI2. The reference implementations, which is GPL licensed and free, are
MPICH and MPICH2. Each interconnect vendor has an enhanced MPI based on those
implementations: MPICH-GM, MPICH-MX and MPICH2-MX for Myrinet, Quadrics MPI, MVAPICH
and MVAPICH2 for Infiniband. OpenMPI is a free MPI implentation which supports near any kind of
underlaying transport. Not always at the best performance, even the community does it's best to
improve it. There are also transport independend commercial MPIs which may give you good
results: Intel MPI, HP-MPI and Platform MPI.

As MPI is a standard, your application may use any of the available implementations. There is no
need to rewrite your code when changing the underlaying MPI. You just need to recompile your
code. A multiprotocoll MPI like OpenMPI or the commercial ones will help you to build binaries for
multiple different clusters. They are also often used by ISVs providing binary only commercial
applications.

Building POV-Ray

We use POV-Ray 3.50c together with the parpov patch 3). It will use some features unique in the
MPI2 standard, so you have to use OpenMPI or a similar MPI implementation. Check your current
used MPI by calling mpi-selector-menu. Building is stright forward:

cd ~/povray/src/parapov-3.50c
./configure --prefix=$HOME/povray --program-suffix=-3.50c
make
cp src/povray $HOME/povray/bin/parpov-3.50c
make clean

Testing

Change into the directory containing your scene. Create a machinefile containing your nodes,
one line per CPU you will use:

node01
node01
node02
node02

Run POV-Ray:

mpirun -np 4 parpov-3.50c pinart.pov

Download the resulting pinart.png or view it by using display pinart.png.

10.02.2010 15:46:17 46

Submitting to batch

Now we set up a submission file and send the job to the Grid Engine. Create the file
pinart-mpi.sub:

#!/bin/bash

#$ -N Pinart
#$ -S /bin/bash
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe orte 16

Run a OpenMPI job
Output is a file using the GE job id in it's name

POVRAY=parpov-3.50c
WIDTH=1280
HEIGHT=1024
IN=pinart.pov
OUT=Pinart-$JOB_ID.png

mpirun -np $NSLOTS $POVRAY -w$WIDTH -h$HEIGHT -O$OUT $IN

Sunmit this file:

$ qsub pinart-mpi.sub

Track your job using qstat -g t. As soon as it is executed, change to the nodes listet in qstat
and watch the processing using top. You will see a process for each CPU used by the calculation.

You shuld adjust the amount of used CPUs to the available ones. Using less CPUs will spread your
jobs over more nodes and increase the load on the interconnect. Overbooking a node with more
processes then CPUs are available will decrease the performance. The task switching between two
processes consumes a lot of CPU cycles.

PVM Jobs

Today PVM is mostly superseded by MPI. We still se several PVM based applications. Even more,
we see at least one commercial application performing better when using PVM then MPI.

Like MPI, PVM offers a distrbuted memory model using message passing. The handling is
somewhat different. Your controlling program and the workers must not be the same binary. You
have to spawn additional worker processes yourself.

Compared with MPI PVM has some advantages: It allows the usage of nodes from different
architectures and sizes. PVM takes care to choose the right binary for the workers and it converts
the different format of integers and floats. It allows to add and remove nodes dynamically. Typically,
an outage of a node doesn't crash your job. Nodes of different speed are allowed. In MPI the
slowest nodes dictates the speed of your job.

These advantages are bought by a slightly lower performance. Even worse, PVM is using plain
TCP/IP and is not interconnect aware. In clusters where PVM is used, we set up a standard network

10.02.2010 15:46:17 47

interface over the interconnect. This is IP over Myrinet, IP over Quadrics or IP over Infiniband. In a
Myrinet cluster, we have also the possibility to use the Myrinet Socket interface to increase the
performance of PVM.

Building POV-Ray

Before you start to use PVM, you have to set the root of your PVM installation. It is typically
/usr/lib/pvm3 or /usr/share/pvm3. It may be that you have your personal PVM installation in
your home. Add the following line to your .bashrc:

export PVM_ROOT=/usr/lib/pvm3

Logout and login to activate the change. Now you are able to build and run any PVM application.

We use POV-Ray 3.50c with the pvmpov patch 4). The building must be adjusted according your
PVM_ROOT:

cd ~/povray/src/pvmpov-3.50c
./configure --prefix=$HOME/povray --program-suffix=-3.50c \
--enable-pvm --with-pvm-incs=/usr/include \
--with-pvm-libs=/usr/lib/pvm3/lib/LINUX64
make
cp src/povray $HOME/povray/bin/pvmpov-3.50c
make clean

Testing

Create a file called pvmhosts in your home. Enter one line per node you will use for your
calculation:

node01
node02

No start up the pvmds which will build a starting environment for your workers. Check if eerything is
up and running:

$ pvm pvmhosts
pvm> conf
conf
2 hosts, 1 data format
 HOST DTID ARCH SPEED DSIG
 node01.cluster 40000 LINUX64 1000 0x00408841
 node02.cluster 40000 LINUX64 1000 0x00408842
pvm> quit
quit

Console: exit handler called
pvmd still running.

Change to the directory containing your scene and start POV-Ray:

pvmpov-3.50c pinart.pov +N +NT4

Download the resulting pinart.png or view it by using display pinart.png.

10.02.2010 15:46:17 48

After calculation, shut down your pvmds:

$ pvm
pvm> halt
halt
Terminated

Submitting to batch

Now we set up a submission file and send the job to the Grid Engine. Create the file
pinart-pvm.sub:

#!/bin/bash

#$ -N Pinart
#$ -S /bin/bash
#$ -cwd
#$ -j y
#$ -m eas
#$ -pe pvm 16

Run a PVM job
Output is a file using the GE job id in it's name

POVRAY=`which pvmpov-3.50c`
WIDTH=1280
HEIGHT=1024
IN=pinart.pov
OUT=Pinart-$JOB_ID.png

$POVRAY -w$WIDTH -h$HEIGHT +N +NT$NSLOTS -O$OUT $IN

Sunmit this file:

$ qsub pinart-pvm.sub

Track your job using qstat -g t. As soon it is executed, change to the nodes listet in qstat and
watch the processing using top. You will see a process for each CPU used by the calculation.

You should adjust the amount of used CPUs to the available ones. Using less CPUs will spread
your jobs over more nodes and increase the load on the network. Overbooking a node with more
processes then CPUs are available will decrease the performance. The task switching between two
processes consumes a lot of CPU cycles.

Which model should I use?

We saw several approaches to distribute work in a cluster. Natural parallelizing, shared memory
(SMP) using SysV SHM, POSIX threads or OpenMP, distributed memory (MPP) using MPI or PVM.
Which one is the right approach?

You will dicover that the different approaches performs different. For an example, performance
dosen't hurt: POV-Ray using MPI or PVM doesn't scale well. This usually looks different on other
kind of mathematical problems.

10.02.2010 15:46:17 49

Quite often you have no choice. You are using an application, provided by an ISV. Several ISVs
provides their code using different memory models. When you have the choice between SMP and
MPP, it's the best approach to run a case using both binaries and compare the used walltime. It is
not uncommon that an MPP based code performs better, even on a single system. There are also
applications providing binaries built for MPI and PVM. Also here, a benchmark with your data is the
best approach to find the better performing one.

When you maintain your own code, you are free to choose the best approach. Our experience:
Simpler code performs better. As long as you have the choice of using a single process, do it. In
case you need more then one node and CPU to do the job, the prefered solution is MPI. Avoid
hybrid applications using MPI and threading. They are hard to debug. Even more the performance
is usually less then the same code using MPI only. We see also a tendence that hybrid applications
overbooks the available CPU cores.

OpenMP is a nice approach to enable some parallelizing in an existing code. But it will never
outperform a clean MPP design. The same rule applies for threaded libraries like GotoBLAS.

License

Even Povray is provided as source, is is not public domain or free software. Keep the copyright in
mind whenever you use this great piece of software! We use an inofficial, custom versions of
Povray which is copyrighted by:

Copyright © 1991-2003, Persistence of Vision Team.
Copyright © 2003-2004, Persistence of Vision Raytracer Pty. Ltd.

The program is provided on an "AS IS" basis, without warranty of any kind, express or implied,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose
and non-infringement of intellectual property of any third party. The Licensed Program has inherent
limitations including design faults and programming bugs.

See povlegal.doc and source-license.txt for additional information. All sources are kept in
~dalco/povray/src.

The scene used in our examples is Copyright © by Marius Rieder marius.rieder@durchmesser.ch
and licensed under the Creative Commons - Attribution / Share Alike license.

1) http://www.povray.org/
2) http://www.boost.org/
3) http://www.verrall.demon.co.uk/mpipov/
4) http://pvmpov.sourceforge.net/

10.02.2010 15:46:17 50

mailto:marius.rieder@durchmesser.ch
http://www.povray.org/
http://www.boost.org/
http://www.verrall.demon.co.uk/mpipov/
http://pvmpov.sourceforge.net/

	DALCO Cluster Manual
	Cluster Uni Fribourg
	Network overview
	Filesystems

	Base installation (Kickstart)
	Operating system
	Kickstart Setup
	Installation source
	DHCP
	TFTP
	PXE
	Kickstart
	Postinstallation
	First boot
	Configration files

	Prepared services
	NFS
	SSH
	R-Services
	Timeserver
	Caching DNS
	Logserver

	Node installation
	Accessing the cluster
	Command line and X11
	You are using a UNIX like operating system
	You are using a Windows based workstation

	VNC
	Start the VNC server
	Stopping the server
	Download the client
	Access your session
	Improve your session setup
	Securing your VNC session

	NX
	Download the client
	Start a session

	Up- and download of data
	Command line basics
	Navigating in the tree
	Edit a file
	Pack and unpack archives
	Manage your processes
	Adjust your environment
	Change your password

	Accessing a node
	Distributing commands and files
	Executing a command on all nodes
	Pushing out a file
	Finding a process
	Listing your processes

	Administrators Tasks
	Booting and shutdown
	Adding users
	Installing software
	Software used by a single user
	Packages provided by the distribution
	RPM packages provided by the software vendor
	DEB packages provided by the software vendor
	Software distributed with an installer
	Software distributed as source

	Backup

	Managing Infiniband
	Subnet manager
	Checking connectivity
	Checking for errors

	Monitoring the cluster
	Webinterface
	Command line

	Using the cluster
	Compiling and installing software
	Running your code
	Runing MPI jobs
	Running MPICH2 jobs
	Running PVM jobs

	Use the job scheduler!

	Using the Grid Engine
	Listing available nodes and CPUs
	Running interactive work
	Submit a serial job
	Submit a job using a full node
	Submit a job using more then one CPU
	Submit MPI jobs
	Submit MPICH jobs
	Submit OpenMPI jobs
	Submit generic MPI jobs

	Submit PVM jobs
	Kill a job
	Troubleshooting

	Examples
	Serial jobs
	Building POV-Ray
	Testing
	Submitting to batch

	Shared memory
	Building POV-Ray
	Testing
	Submitting to batch

	MPI Jobs
	Building POV-Ray
	Testing
	Submitting to batch

	PVM Jobs
	Building POV-Ray
	Testing
	Submitting to batch

	Which model should I use?
	License

